
The aryl hydrocarbon receptor: a perspective on potential roles in
the immune system

Introduction

The aryl hydrocarbon receptor (AHR) is a protein of

ancient origins. Phylogenetic analysis reveals that func-

tional orthologues of the Ahr gene are present in living

mammals, amphibians, reptiles and birds.1 For more than

30 years, the AHR has been studied as a receptor for

environmental contaminants and as a mediator of chemi-

cal toxicity. Recently, an additional role for the AHR in

normal vascular development has been identified. Long-

standing literature on 2,3,7,8 tetrachlorodibenzo-p-dioxin

(TCDD) toxicology, as well as a flurry of recent high-pro-

file papers, has suggested a role for this protein in immu-

nology. In this review, we will provide an overview of

AHR signal transduction with an emphasis on providing

information that may guide future studies aimed at delin-

eating the role of this protein in human immunity and

related disease.

The AHR signalling pathway

The AHR is a ligand-activated transcription factor from

the Per-Arnt-Sim (PAS) superfamily of proteins.2 Analysis

of the AHR reveals an N-terminal basic helix loop helix

(bHLH) domain, a C-terminal variable domain, and a

central PAS domain with two degenerate repeats (denoted

repeat A and repeat B).3–5 The PAS domain of the AHR

mediates heterodimerization with a structurally related

protein known as the aryl hydrocarbon receptor nuclear

translocator (ARNT), DNA recognition, ligand binding
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Summary

The aryl hydrocarbon receptor (AHR) is a protein best known for its role

in mediating toxicity. Over 30 years of research has uncovered additional

roles for the AHR in xenobiotic metabolism and normal vascular develop-

ment. Activation of the AHR has long been known to cause immunotoxic-

ity, including thymic involution. Recent data suggesting a role for the AHR

in regulatory T-cell (Treg) and T-helper 17 (Th17) cell development have

only added to the excitement about this biology. In this review, we will

attempt to illustrate what is currently known about AHR biology in the

hope that data from fields as diverse as evolutionary biology and pharma-

cology will help elucidate the mechanism by which AHR modifies immune

responses. We also will discuss the complexities of AHR pharmacology and

genetics that may influence future studies of AHR in the immune system.
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Abbreviations: AHR, aryl hydrocarbon receptor; AHRR, aryl hydrocarbon receptor repressor; ARA9, aryl hydrocarbon receptor
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low density lipoprotein; NES, nuclear export signal; NLS, nuclear localization signal; Nrf2, nuclear erythroid 2-related factor;
p23, protein 23; PAH, polycyclic aromatic hydrocarbon; PAS, Per-ARNT-Sim; PCB, polychlorinated biphenyl; pentaCB, penta
chlorinated byphenyls; RIP140, receptor interacting protein 140; SHP, nuclear receptor subfamily 0 group B member 2; Sp1,
transacting transcription factor 1; SRC, nuclear receptor coactivator; TAD, transcriptionally active domain; TCDD, 2,3,7,8
tetrachlorodibenzo-p-dioxin; Th17, T-helper 17; Treg, regulatory T cell; UGT1A6, UDP glucuronosyltransferase 1 family
polypeptide A6.
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and chaperone interactions.5–7 Next to the PAS domain is

a bHLH domain that is involved in DNA binding and

support of dimerization.4,6,8 The C-terminal half is highly

variable and responsible for differences in receptor molec-

ular weight within and across species.2,5 The largely

unstructured C-terminal region contains a transcription-

ally active domain and potentially domains involved in

receptor transformation2,5 (Fig. 1).

In the absence of bound agonist, the AHR is most

commonly found in the cytoplasm in a complex with its

chaperones heat shock protein 90 (Hsp90), P23 and aryl

hydrocarbon receptor associated 9 (ARA9; aka AIP,

XAP2).9,10,12 In addition to holding the receptor in a

form able to bind ligand, Hsp90 prevents surreptitious

nuclear translocation of the AHR.9 The cochaperone p23

stabilizes the AHR–Hsp90 interaction, while the ARA9

protein enhances AHR signalling by increasing the

amount of properly folded AHR in the cytoplasm.10,12

Upon agonist binding, the AHR–chaperone complex

translocates to the nucleus and binds the ARNT pro-

tein.13,14 The ARNT protein is structurally similar to

the AHR (Fig. 1). This heterodimeric pairing yields a

competent transcription factor within the nuclear com-

partment of cells (Fig. 2).
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Figure 1. Protein domains found in the aryl hydrocarbon receptor (AHR) and aryl hydrocarbon receptor nuclear translocator (ARNT). The nuclear

localization sequence (NLS) and nuclear export sequence (NES) are found within the basic helix loop helix (bHLH) region. The bHLH also plays

a critical role in DNA binding. The characteristic domains in Per-ARNT-Sim (PAS) family members mediate heterodimerization and chaperone

binding. The C-terminus is variable, but contains the transactivation domain (TAD) responsible for activating transcription after DNA binding.
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Figure 2. The aryl hydrocarbon receptor (AHR) signalling pathway. Hydrophobic ligands enter the cell via diffusion through the cell membrane.

Ligands bind to the AHR in the cytosol. Ligand binding causes conformational changes leading to nuclear localization sequence (NLS) exposure

and the AHR complex translocates to the nucleus. In the nucleus, the AHR binds its heterodimeric partner, the aryl hydrocarbon receptor

nuclear translocator (ARNT) and directs transcription from dioxin response elements (DREs), upstream of target genes. Signalling through the

AHR is down-regulated by two means, the proteasome and a feed-back pathway involving the aryl hydrocarbon receptor repressor (AHRR). The

AHRR is an AHR gene target and its expression is up-regulated by AHR signalling. Signalling by the AHR leads to three biological pathways

referred to as the adaptive metabolic pathway, the toxic pathway, and the developmental pathway. ARA9, aryl hydrocarbon receptor associated 9;

Hsp90, heat shock protein 90.
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The AHR:ARNT heterodimer directs transcription of

genes from dioxin-responsive enhancer elements (DREs)

within the genome. These classic enhancers are found

near AHR transcriptional targets. These primary targets

are commonly known as the ‘AHR gene battery’. Regula-

tion of this gene battery has been shown to be dependent

upon a number of common coactivators. For example,

histone acetyl transferases are recruited to the DRE-regu-

lated promoters through coactivators such as nuclear

receptor coactivator (SRC) and p300.15–17 Additionally,

transcriptional cofactors, such as transacting transcription

factor 1 (Sp1), receptor interacting protein 140 (RIP140),

and nuclear receptor subfamily 0 group B member 2

(SHP), activate the transcriptional response of the

AHR:ARNT heterodimer.18,19 Although the list of mem-

bers of the AHR gene battery is still expanding, it

includes those that encode xenobiotic metabolizing

enzymes, such as cytochromes P450 (CYP) 1A1, CYP1A2,

CYP1B1 and UDP glucuronosyltransferase 1 family poly-

peptide A6 (UGT1A6)20 (Table 1). Collectively these

enzymes are well known for their important roles in the

clearance of foreign chemicals.

Signalling through the AHR can be down-regulated

by at least two means. Upon entering the nucleus, the

ligand-activated AHR is exported and degraded by the

ubiquitin/proteosome pathway.21 Like many other PAS

signalling pathways, AHR signalling includes a negative

feedback arm. Signalling by the AHR is attenuated by

another PAS protein known as the AHR repressor

(AHRR). The AHRR is a DRE-regulated gene and its

expression increases rapidly upon AHR activation22

(Fig. 2). The AHRR is structurally similar to the AHR,

but contains a potent transcriptional repressor domain

and does not require an agonist to dimerize with

ARNT. Down-regulation of AHR signalling by these

two independent means implies that there is evolution-

ary selection against overactivation of the AHR gene

battery.

AHR-mediated biology

The adaptive pathway

The AHR was originally characterized as a regulator of

xenobiotic metabolism, specifically that of polycyclic

aromatic hydrocarbons (PAH). Early experiments

revealed that exposure to pollutants such as

benzo[a]pyrene led to marked increases in cytochromes

P450 that act to hydroxylate this foreign chemical,

increasing its water solubility and decreasing its biologi-

cal residency.23 This pathway fits the definition of an

‘adaptive metabolic response’, in that cytosolic AHR

binds xenobiotic ligands and activates transcription of

enzymes that mediate their biotransformation and

excretion.24

The toxic pathway

In response to halogenated dibenzo-p-dioxins (‘dioxins’)

and related biphenyls and dibenzofurans, AHR

activation not only induces the adaptive xenobiotic

metabolic pathway, but also mediates a variety of toxic

responses. Dioxin toxicity commonly includes hepato-

cellular damage, thymic involution, immune suppres-

sion, chloracne, epithelial hyperplasia, teratogenesis, and

tumour promotion.25–28 Evidence to support the role of

the AHR in toxicity is twofold. First, the binding affin-

ity of dioxin congeners for the AHR corresponds to

their toxic potency in vivo.29 For example, the ligand

TCDD displays the greatest affinity for the AHR and is

the most toxic, while the weaker 2,8-dichloro congener

has a 300-fold lower affinity and is essentially non-

toxic.26,29 Secondly, mice harbouring the Ahrb allele,

which codes for a receptor with a high binding affinity

for agonists, display an increased incidence of dioxin

toxicity and induction of AHR battery genes compared

with mice harbouring the Ahrd allele, which encodes a

receptor with a 10-fold lower affinity.30–32 In addition

to binding affinities with dissociation constant (KD) val-

ues in the picomolar range, TCDD is not appreciably

metabolized, thus causing prolonged AHR activation.32

Because of its remarkable potency and biological stabil-

ity, TCDD has proved to be invaluable in elucidating

the mechanism of AHR signalling and enzyme induc-

tion.

The developmental pathway

To elucidate the physiological and developmental impor-

tance of the AHR, several laboratories have characterized

Ahr null mice.33–35 These models differ in some respects,

yet display key in vivo phenotypic similarities.36 As

expected, in response to PAHs and dioxins, Ahr null

mice cannot up-regulate the metabolic enzymes charac-

teristic of the adaptive pathway.33–35 Additionally, these

animals are resistant to most, if not all, aspects of dioxin

toxicity.35 Indicating a role in normal physiology, a num-

ber of surprising pathologies also have been characterized

in these mouse models. For example, Ahr null mice have

markedly smaller livers than wild-type littermates and

have abnormal vasculature in the liver, kidney and

eye.33,34,37 Abnormal hepatic circulation, characterized by

anastomotic sinusoidal vessels, appears to cause decreased

perfusion and necrosis of the liver periphery.37,38 This

can be demonstrated in Ahr null embryos as early as

embryonic day 15.37,38 In addition, extramedullary hae-

matopoiesis, fatty metamorphosis of hepatocytes, and

portal tract fibrosis have been observed in Ahr null

livers.33,34 Cardiac hypertrophy, hypertension, and ele-

vated levels of vasoconstrictors are also seen in Ahr null

animals.39
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Table 1. Aryl hydrocarbon receptor (AHR)-regulated genes. The genes listed here were identified as differentially expressed upon 2,3,7,8-tetra-

chlorodibenzo-p-dioxin exposure. All samples were compared to vehicle-treated control samples. The official gene symbol, gene name and Gen-

Bank accession number are provided. To search for dioxin responsive enhancer (DRE) sequences, we pulled the upstream sequence for each gene

from the University of California–Santa Cruz (UCSC) genome browser and searched for DRE sequences on either the + or ) strand using Motif-

Viz.112,113 The number of times the DRE consensus sequence, TNGCGTG, was identified within 15 000 bases upstream of the gene target is indi-

cated in the DRE column. In the Gene expression column, › indicates that the gene was upregulate by TCDD treatment. A fl indicates that the

expression of the gene was downregulated by TCDD. The number in the Gene expression column indicates the fold change between the TCDD

and vehicle control treated samples. The Cell type column indicates the cell population used in each published experiment. Double negative-

recent thymic emigrants (DN-RTE), triple negative X T-cell population (TNX), graft versus host disease (GVHD).

Gene symbol Gene name Genebank accession DRE Gene expression Cell type Reference

Cyp1a1 CYP450, family 1, subfamily a, polypeptide 1 NM_001136059.1 5 38› Liver 114

Fabp5 Fatty acid binding protein 5 NM_010634.2 0 4› Liver 114

Gsta2 Glutathione S-transferase a2 NM_008182.3 3 7› Liver 114

Itgb1 Integrin b 1 NM_010578.1 0 3› Liver 114

Notch1 Notch homolog 1 NM_008714.2 4 3› Liver 114

Nqo1 NAD(P)H dehydrogenase, quinone 1 NM_008706.5 4 5› Liver 114

Ugdh UDP-glucose dehydrogenase NM_009466.2 2 3› Liver 114

Car3 Carbonic anhydrase 3 NM_007606.3 1 4fl Liver 115

Cdca5 Cell division cycle associated 5 NM_026410.3 3 9› Liver 115

Cfdp1 Craniofacial development protein 1 NM_011801.1 3 4› Liver 115

Epyc Epiphycan NM_007884.2 1 6› Liver 115

Gadd45b Growth arrest & DNA damage-inducible 45b NM_008655.1 2 5› Liver 115

Lpin2 Lipin2 NM_022882.3 2 3› Liver 115

Mrpl37 Mitochondrial ribosomal protein L37 NM_025500.1 3 8› Liver 115

Myc Myelocytomatosis oncogene NM_010849.4 2 4› Liver 115

Pabpc2 Poly(A) binding protein, cytoplasmic 2 NM_011033.2 0 7› Liver 115

Pak1ip1 PAK1 interacting protein 1 NM_026550.2 1 4› Liver 115

Tiparp TCDD-inducible poly(ADP-ribose) polymerase NM_178892.5 0 10› Liver 115

Tnfaip2 Tumor necrosis factor, a-induced protein 2 NM_009396.2 4 6› Liver 115

Ahrr AHR repressor NM_009644.2 2 21› CD4+ cells (GVHD) 72

Ccr4 Chemokine (C-C motif) recptor 4 NM_009916.2 4 5› CD4+ cells (GVHD) 72

Ccr5 Chemokine (C-C motif) recptor 5 NM_009917.5 0 3› CD4+ cells (GVHD) 72

Ccr9 Chemokine (C-C motif) recptor 9 NM_009913.5 3 5› CD4+ cells (GVHD) 72

Gzmb Granzyme B NM_013542.2 1 6› CD4+ cells (GVHD) 72

IL12rb2 Interleukin 12 receptor, b2 NM_008354.3 1 10› CD4+ cells (GVHD) 72

Prdm1 PR domain containing 1 NM_007548.3 2 3› CD4+ cells (GVHD) 72

Stat4 Signal transducer & activator of transcription 4 NM_011487.4 2 3› CD4+ cells (GVHD) 72

Tgfb3 Transforming growth factor b3 NM_009368.2 0 13› CD4+ cells (GVHD) 72

Acpp Acid phosphatase, prostate NM_207668.2 4 16› TNX 66

Bcl9 B-cell lymphoma 9 NM_029933.3 3 20› TNX 66

Ctxn1 Cortexin 1 NM_183315.2 2 12› TNX 66

Ifit3 Interferon-induced protein with tetratricopeptide repeats 3 NM_010501.2 3 10› TNX 66

IL12rb1 Interleukin 12 receptor b1 NM_008353.2 1 13› TNX 66

Itgb7 Integrin b7 NM_013566.2 2 9› TNX 66

Klf2 Kruppel like factor 2 NM_008452.2 0 13› TNX 66

Lgals3 Lectin, galactoside-binding soluble 3 NM_010705.2 3 55› TNX 66

Olfr1265 Olfactory receptor 1265 NM_146343.1 0 8› TNX 66

Ret Ret proto-oncogene NM_001080780.1 2 11› TNX 66

Ssxb2 Synovial sarcoma, X member B, breakpoint 2 NM_001001450.4 0 12› TNX 66

Tm9Sf4 Transmembrane 9 superfamily protein member 4 NM_133847.3 4 14› TNX 66

Traf5 TNF receptor-associated factor 5 NM_011633.1 0 10› TNX 66

Vps25 Vacuolar protein sorting 25 NM_026776.3 3 12› TNX 66

Zcchc2 Zinc finger, CCHC domain containing 2 NM_001122675.1 1 9› TNX 66

Cyp1b1 CYP450 family 1, subfamily B, polypeptide 1 NM_009994.1 4 33› TNX, DN-RTE (3›) 65,66

Ccl9 Chemokine (C-C motif) ligand 9 NM_011338.2 1 6› DN-RTE 65

Clec4d C-type lectin domain family 4, member d NM_010819.3 1 4› DN-RTE 65

Ctsg Cathepsin G NM_007800.1 3 6› DN-RTE 65

Ctsl Cathepsin L NM_009984.3 2 4› DN-RTE 65

Cxcl2 Chemokine (C-X-C motif) ligand 2 NM_009140.2 3 12› DN-RTE 65

Fn1 Fibronectin 1 NM_010233.1 3 5› DN-RTE 65

Hp Haptoglobin NM_017370.1 2 3› DN-RTE 65

Lpl Lipoprotein lipase NM_008509.2 2 5› DN-RTE 65

Lyz Lysozyme NM_013590.3 1 3› DN-RTE 65

Mt1 Metallothionein 1 NM_013602.2 2 3› DN-RTE 65

S100a8 S100 calcium binding protein A8 NM_013650.2 1 4› DN-RTE 65

S100a9 S100 calcium binding protein A9 NM_009114.2 4 5› DN-RTE 65

Scin Scinderin NM_009132.1 2 11› DN-RTE 65
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Perhaps one of the most consistent phenotypic findings

in Ahr null animals is a patent ductus venosus (DV).37,40

The DV, like the ductus arteriosus and foramen ovale, is

part of the fetal circulatory system.41 The DV connects

the umbilical/portal vein to the inferior vena cava, allow-

ing oxygen- and nutrient-rich blood filtered by the pla-

centa to bypass the embryonic liver and nourish the

developing heart and brain. Shortly after birth, the DV

closes and forces blood from the portal vein through the

liver sinusoids for hepatic filtration prior to reaching the

lungs and heart. In 100% of Ahr null animals, the DV

remains patent into adulthood.40 Because of its robust

phenotype–genotype correlation, in our laboratory DV

closure is used as a marker of developmental AHR signal-

ling. Hypomorphic Ahr, Arnt, and Ara9 mice, which

express only 1/10th of the normal level of protein, also

have a patent DV, highlighting the importance of these

AHR signalling pathway members in developmental sig-

nalling.42–44 Because decreased perfusion and necrosis are

seen prior to normal DV closure, the patent DV pheno-

type in Ahr null animals may be secondary to the abnor-

mal microvascular perfusion. However, the exact

mechanism by which the loss of AHR signalling leads to

patent DV is still unknown.

Endogenous ligand

The developmental cue for AHR signalling is still

unknown. In support of the existence of an ‘endogenous

ligand’, we offer the fact that activation of the AHR by

TCDD rescues the patent DV phenotype of AHR hypo-

morphs.43 This observation demonstrates that the devel-

opmental response to this toxic ligand mimics

developmental AHR signalling. A number of potential

endogenous ligands have been suggested. In this regard,

indigoids and tryptophan derivatives, which are structur-

ally similar to known xenobiotic ligands, are able to acti-

vate AHR signalling.45,46 Recently, low density lipoprotein

(LDL) has also been identified as an activator of AHR sig-

nalling.47 Because LDL has a very different structure from

other known AHR ligands, it is possible that LDL carries

into the cell a small molecule with more characteristic

AHR agonist features.

However, the developmental cue for AHR activation

may not be a ligand at all. Alternative activation mecha-

nisms of the AHR, such as intracellular cyclic AMP

(cAMP) and fluid shear stress, have been proposed.47,48

In addition, the AHR may become activated by phos-

phorylation in response to another cellular cue.49 There is

evidence that is inconsistent with the existence of an

endogenous ligand. In this regard, mice carrying both the

Ahrb and Ahrd alleles, encoding receptors with a 10-fold

difference in ligand-binding affinity, display normal DV

closure (J. Walisser, unpublished observation). Mouse

models have demonstrated that the AHR is required in

different cells for toxicity from those required for the

developmental role.50 Therefore, the mechanism of TCDD

toxicity, clearly linked to ligand binding, is unlikely to be

secondary to disruption of the normal developmental role

of the AHR. A lack of an endogenous ligand for the AHR

would suggest that the adaptive and toxic pathways are

independent from the developmental pathway. In fact,

there is phylogenetic evidence that the ligand-binding

functions of the AHR evolved independently from its

developmental role.51

Evolutionary biology of AHR

While the AHR was discovered because of its role in

toxicology, the primary function of mammalian AHR is

probably related to normal development. Phylogenetic

evidence suggests that the vertebrate AHR arose in bio-

logical systems over 450 Ma. Therefore, it is unlikely that

the products of modern industrialization, PAHs and diox-

ins, have provided the selective pressure for the conserva-

tion of the AHR throughout evolution.51,52 Although

nearly all vertebrate AHR orthologues identified to date

have been shown to bind TCDD, the response to xenobi-

otic ligands is quite variable.53,54 The variability in xeno-

biotic response may have arisen as a means to limit

AHR-mediated toxicity while maintaining its key develop-

mental role. Put another way, ligand binding may be a

secondary, acquired function of this receptor that arose

during vertebrate evolution.

Additional evidence that ligand binding is independent

of the developmental role of the AHR comes from data

in invertebrate organisms. Invertebrate and vertebrate

AHRs share key properties in signal transduction,

including heterodimerization with ARNT orthologues

and transcriptional activation through DREs.51,53,55,56

However, invertebrate orthologues of the AHR do not

bind classic AHR ligands.52,54,55 The DNA sequence of

the AHR may have been modified during the evolution

of vertebrates, to accommodate an increasing need for

AHR signalling in vascular development. These same

modifications also may have led to the development of

ligand binding.

The vertebrate AHR may function in an analogous

manner to the invertebrate AHR but in the vasculature.

The Caenorhabditis elegans AHR orthologue directs neu-

ronal cell fate and oxygen-sensitive aggregation.57,58 The

Drosophila melanogaster AHR orthologue is expressed in

sensory cells and mutations can lead to increased den-

dritic branching and overgrowth, antennae transforming

into legs, and loss of colour vision.58 Although there is

little evidence that these same roles of invertebrate AHR

have been maintained in mammals, the increased density

of anastomotic hepatic sinusoids in the Ahr null mouse is

reminiscent of the increased dendritic branching and

overgrowth in Drosophila.
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AHR in the immune system

AHR-dependent immune function

There is considerable evidence to suggest that AHR sig-

nalling plays a role in the function of the immune system.

Numerous haematopoietic defects have been described in

Ahr null mouse models, including altered lymphocyte

numbers in the spleen, perinatal extramedullary haemato-

poiesis in the liver, and enlarged spleens.33,34 While

splenomegaly may be secondary to portal hypertension it

may also be a compensation for a haematopoietic defect.

In addition to these histological differences, functional

studies support the idea that the AHR plays a role in

immunity. In this regard, Ahr null animals are more sus-

ceptible to listeria infection.59

Considerable evidence from studies using AHR agonists

further supports a role for the AHR in the immune sys-

tem. Exposure to TCDD leads to profound suppression

of both humoral and cellular immune responses and

results in increased susceptibility to infection.60,61

Although TCDD suppresses CD40L-activated B-cell pro-

liferation, T cells are the primary targets of TCDD and

mediate inhibition of the antibody response of B cells.62,63

Thymic involution induced by TCDD is associated with

thymocyte loss, thymocyte proliferation arrest and prema-

ture emigration of T-cell progenitors.64–66 In addition,

TCDD can prevent prothymocytes in the bone marrow

from seeding the thymus.67 Three independent laborato-

ries have identified an early triple-negative thymocyte

population as the targets of TCDD-induced thymocyte

emigration.64–66 Exposure to AHR agonists also affects

functional immunity. For example, TCDD causes

increased inflammation and inhibits the CD8+ T-cell

response to influenza infection.68,69 Other model systems

shown to be affected by AHR agonists include experimen-

tal autoimmune encephalitis (EAE), graft-versus-host dis-

ease (GVHD), and mouse models of allergy and

transplant tolerance.70–75

The AHR and Tregs

Recently a role for AHR signalling in regulatory T cells

(Tregs) has been reported by at least four independent

laboratories. By suppressing effector cell proliferation and

cytokine secretion, Tregs have been shown to reduce auto-

immune and allergic disease, limit the immune response

in infectious disease, and inhibit antitumour immune

responses.76 There is evidence that a subset of Tregs

develop in the thymus, known as natural or innate

Tregs.77 Tregs also develop in the periphery during an

immune response and are referred to as adaptive Tregs.

These two populations of Tregs probably differ in their

antigen specificity, development, and mechanism of

immune regulation.78,79 In one report, exposure to TCDD

increased the proliferation of Tregs and suppressed EAE.70

In another report, TCDD exposure generated Tregs and

prevented GVHD.72 In a third model, activation of the

AHR also induced Tregs and improved graft survival.75 In

keeping with a role for the AHR in Treg function, it has

been observed that naı̈ve T cells isolated from Ahr null

animals are inefficient at generating Tregs in vitro.80

The mechanism by which AHR signalling might pro-

mote Treg differentiation remains largely uncharacterized.

There are many ways to define Tregs. However, there is

not yet a clear way to differentiate natural and adaptive

Tregs.78 Some laboratories define Tregs by their in vitro

suppressive activity or expression of the cell surface mark-

ers CD25 and CD62L.72,81 Other laboratories use the

expression of forkhead box P3 (FoxP3), a transcription

factor thought to play a central role in Treg activity.70,80

Exposure to TCDD causes a reduction in CD62L expres-

sion in T cells.82 There is evidence that the AHR directly

regulates the expression of FoxP3, and AHR activation

leads to an increase in Tregs in at least two model sys-

tems.70,75,80 However, a decrease in FoxP3+ cells upon

activation of the AHR was seen in a GVHD model.72 This

inconsistency in the effect of AHR signalling on FoxP3+

cells may be explained by the dose of TCDD or the

immune response model used in the experiments. The

variable effect on FoxP3 expression also may suggest that

AHR signalling plays different roles in natural and adap-

tive Tregs and that the type of Tregs involved in EAE,

allograft-tolerance and GVHD models differs.

The AHR may affect Treg differentiation through at

least two other mechanisms. First, AHR signalling may

influence Treg development by augmenting transforming

growth factor (TGF)-b signalling. A number of indepen-

dent laboratories using a variety of ligands and experi-

mental systems have identified an interplay between the

AHR and TGF-b signalling pathways.83–86 Cross-talk

between AHR and TGF-b signalling also has been

observed during Treg differentiation. For example, a 13-

fold increase in TGF-b3 RNA was found in Tregs exposed

to TCDD.72 Furthermore, in tissue culture, TGF-b
mimics the effects of TCDD on Tregs, and inhibition of

TGF-b signalling also inhibits TCDD-induced Treg activ-

ity.70 It has been suggested that the Treg populations have

different requirements for TGF-b.78 In fact, there are

fewer peripheral Tregs, but normal numbers of thymus-

derived Tregs, in Tgfbr null mice.87 These data also pro-

vide evidence that the AHR may play different roles in

adaptive and natural Tregs.

Another potential mechanism by which the AHR may

affect Treg activity involves dendritic cells (DCs). DC

antigen presentation plays a central role in converting

naı̈ve T cells into Tregs in the periphery (adaptive

Tregs).88,89 Cytokines are crucial to T-cell activation, and

without the appropriate milieu, DCs can induce clonal

deletion, anergy or tolerogenic regulatory T cells.90,91 A
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model exists whereby mature DCs activate Tregs, and

these Tregs go on to limit their own expansion by block-

ing splenic DCs from maturing.89 Exposure to TCDD

reduces the number of splenic DCs.92 The AHR agonist

VAF347 promoted long-term graft acceptance in an islet

cell transplant model and reduced the response in an

allergy model.74,75 In this study, alterations in DC expres-

sion of interleukin (IL)-6, IL-10 and TGF-b were pro-

posed as a potential mechanism of the AHR-mediated

effect. In fact, the authors demonstrated that graft rejec-

tion was prevented by transfer of AHR agonist-treated

DCs. Taken together, these findings suggest that AHR sig-

nalling may affect Treg differentiation by modulating

expression of Treg markers from within Tregs or through

DCs.

AHR-mediated inflammation

The AHR has been reported recently to play a role in the

development of T helper 17 (Th17) cells, a new subset of

CD4+ T cells thought to play a major role in autoimmu-

nity and clearance of infectious agents. It has been

observed that injecting healthy mice with Th17 cells from

animals with EAE causes autoimmunity in the recipi-

ents.93 In addition, it has been shown that adequate Th17

cell function inhibits systemic infection with gastrointesti-

nal pathogens.93,94 Th17 cells are characterized by their

secretion of the proinflammatory cytokines IL-17 and IL-

22. The ligand-activated AHR regulates expression of

these cytokines in tissue culture.71 A role for the AHR in

the regulation of Th17 cells is supported further by the

observation that the absolute number of Th17 cells is

reduced in Ahr null mice upon induction of EAE.71,80

Because Th17 cells promote the immune response and

Tregs are known to decrease immune reactivity, a model

has emerged suggesting that the Treg/Th17 balance distin-

guishes an effective immune response and self-antigen

tolerance from chronic infection or autoimmunity. Preli-

minary evidence from multiple laboratories has suggested

that the AHR modifies the Treg/Th17 cell balance

through modifying the cytokine milleu. The mechanism

at work may be related to the fact that TGF-b induces

Treg differentiation, while the presence of IL-6 leads to

TGF-b-dependent Th17 cell production.76,93 As described

above, the AHR has been shown to modulate cytokine

signalling. Further evidence for this biology is provided

by unpublished observations from our own laboratory,

where we observed that Helicobacter infection results in

rectal prolapse in Ahr null animals, in marked contrast to

wild-type littermates (E. Stevens, unpublished observa-

tion). It is possible that an alteration in the Treg/Th17

balance in Ahr null animals may play a role in the sever-

ity of this gastrointestinal infection.

As a transcription factor, AHR probably modulates

T-cell development at the transcriptional level. In addi-

tion to subtype-specific transcriptional changes described

above, the up-regulation of CD11a is blocked in activated

T cells treated with TCDD, which may impede T cells

from reaching the source of antigen.82 As chemokine

receptor transcripts are up-regulated, T cells disappear

from the spleen, suggesting homing to other tissues.72 It

has also been demonstrated that TCDD up-regulates

Kruppel like factor 2 (Klf2), which is implicated in the

homing of T cells and the prevention of inflammatory

chemokine receptor expression.66,95 In summary, the pub-

lished data to date are in agreement that AHR-mediated

transcriptional changes can affect T-cell activation, but

the mechanism is still largely unknown.

Exposure to TCDD can lead to inflammation and also

to increased secretion of inflammatory cytokines involved

in innate immunity.28 In mice, TCDD exposure is associ-

ated with decreased survival, neutrophilia, and elevated

interferon (IFN)-c levels in the lungs following influenza

virus infection.68 Given that AHR in haematopoietic cells

is not required for this phenotype, it may be that activa-

tion within the lung parenchyma changes the immune

response to infection.68,96 One interpretation of this data

is that neutrophils are a secondary response to AHR-med-

iated transcriptional changes within the lung parenchymal

target cell. This model may be similar to what is occur-

ring in TCDD-induced hepatotoxicity. In this system,

conditional AHR mouse models have been used to dem-

onstrate that TCDD causes primary transcriptional effects

within hepatocytes and secondary effects are mediated by

inflammatory cells that exacerbate the hepatotoxicity.97

These experiments emphasize the importance of deter-

mining the primary effects of AHR signalling in order to

elucidate the mechanism by which AHR signalling affects

the immune response.

Considerations for future experiments

Primary and secondary effects in AHR biology

We propose a model in which all the upstream signalling

steps in the three AHR biological pathways are similar.

To support this idea, we offer the fact that both TCDD-

induced toxicity and vascular development are dependent

on most, if not all, of the same signalling molecules

required for the adaptive response.42,44 Given the impor-

tance of enhancer recognition of the AHR:ARNT hetero-

dimer, it would follow that transcriptional changes are

the primary mechanism leading to both developmental

and toxic end-points. In support of this idea, AHR

mutants deficient in DNA-binding or nuclear localization

activity are also resistant to TCDD-induced toxicity and

display patent DV.98,99 In our view, these experiments

suggest that elucidating the specific transcriptional targets

of AHR underlying each distinct biological end-point is

critical to defining the mechanism.
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One key point is that, while the signalling mechanism

of gene transcription is central to all AHR biology, which

genes are targeted depends largely on the cell type being

studied. Data demonstrating that the AHR is required in

different cell types for hepatotoxicity and vascular devel-

opment are in agreement with the idea that the AHR

mediates various roles in a cell type-dependent fashion.50

Therefore, identifying the target cell(s) is an important

first step in the identification of key gene targets mediat-

ing such variable end-points as hepatoxicity, vascular

remodelling, and immune suppression in AHR biology.

Another key point to consider when studying the

mechanism by which the AHR mediates such diverse

biology is the distinction between primary and down-

stream gene targets. While DRE-driven, AHR-mediated

transcription has been well studied, DRE-independent

gene transcription has also been reported to occur. These

DRE-independent targets may represent promoters bound

by the AHR at enhancer sequences distinct from DREs or

they may be secondary targets.100 Using dose response

and timing of transcriptional changes, the primary genetic

targets of AHR activation in the liver have been separated

from the downstream transcriptional changes during

TCDD-induced hepatoxicity.101,102 Although many AHR

target genes have been identified, their position in the sig-

nalling sequence and the mechanism by which they medi-

ate AHR biology still must be elucidated (Table 1). In

conclusion, identifying the primary transcriptional

changes mediated by the AHR in target cells holds prom-

ise for elucidation of the role of AHR in the immune

system.

AHR pharmacology

The well-characterized pharmacology of the AHR may

prove to be a powerful tool with which to unravel the

role of this protein in immunology. The most studied

AHR agonist, TCDD, binds AHR with high affinity.103,104

Because its four chlorine residues prevent access to the

active sites of metabolic enzymes, TCDD is poorly metab-

olized.103 As a relatively pure, high-affinity agonist, TCDD

can be used at low doses and thus would be predicted to

have fewer off-target effects than non-halogenated agon-

ists. For example, indirubin is a potent AHR agonist, but

it also binds to and inhibits cyclin-dependent kinases and

c-Src kinase.105 Benzo-a-pyrene activates the AHR and is

metabolized to epoxides and quinones via the adaptive

pathway.106 Epoxide intermediates are known to be highly

cytotoxic through alkylation of DNA and other cellular

macromolecules.106 Quinones can generate reactive oxy-

gen species (ROS), which in turn can influence gene

expression through a variety of mechanisms, including

activation of the transcription factor nuclear erythroid

2-related factor (Nrf2).106,107 The bottom line is that

studies using highly potent and specific agonists, such as

TCDD, provide the most direct route to elucidate the sig-

nalling steps by which the AHR influences the immune

system.

Another important pharmacological consideration in

the study of AHR signalling is the length of activation.

Unlike TCDD, many AHR agonists, including benzo-a-

pyrene (BaP), indirubin and 6-formylindolo(3,2-b)

carbazole (FICZ), are rapidly cleared, leading to only

short-term activation.103 These agonists cause substantial

up-regulation of AHR battery genes, but only within

hours of treatment.103,108 In comparison, TCDD causes

long-term stimulation of AHR that can be measured days

after administration.109–111 Differences in the length

of AHR stimulation may lead to differences in AHR-

mediated biology. In fact, data from experiments using

FICZ and TCDD led to different conclusions about AHR

signalling in T cells during EAE.70 It is clear that the

choice of agonist is an important consideration for the

design and interpretation of future studies (Table 2).

Use of Ahr mutant animals

The use of Ahr null animals complicates AHR pharmacol-

ogy. There are two reasons why the use of Ahr null

animals can lead to misinterpretation of results. First,

these mice have a patent DV and other abnormalities

described above. It can, therefore, be difficult to isolate

phenotypic effects directly caused by the loss of the AHR

and those downstream of abnormal vasculature. Secondly,

Ahr null animals should not be used to study ligands that

may be modified by metabolic enzymes. Bioactivation

may be required for the phenotypic effect. The use of Ahr

Table 2. Aryl hydrocarbon receptor (AHR) ligands

Ligand EC50 (mol/kg) Metabolized? References

HAH (TCDD) 10)12 No 116,117

PAH (BaP) 10)5–10)6 Yes 117,118

PCB (pentaCB) 10)7 Yes 104

FICZ 10)10–10)12 Yes 109,119

Indirubin 10)8 Yes 45,120

Lipoxin-4a 10)9 Yes 121

Bilirubin 10)6 Yes 122

ITE 10)9 ? 123,124

ICZ 10)8–10)10 Yes 116,125

This table contains some of the best studied AHR ligands. The EC50

is the dose of the ligand that leads to 50% of the maximal cyto-

chrome P450 gene induction. These are estimates and are dependent

on many factors, including cell type and AHR allele. Some AHR

ligands are metabolized enzymatically and are short-lived. The EC50s

of these ligands are sensitive to the timing of induction.

FICZ, 6-formylindolo(3,2-b)carbazole; ICZ, indolo(3,2-b)carbazole;

ITE, 2-(10H-indole-30-carbonyl)-thiazole-4-carboxylic acid methyl

ester; PAH, polycyclic aromatic hydrocarbon; PCB, polychlorinated

biphenyl; TCDD, 2,3,7,8 tetrachlorodibenzo-p-dioxin.
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null animals in these situations does not allow the

conclusion that the phenotype is the direct result of an

AHR transcriptional response, as loss of the AHR impairs

metabolic enzyme induction. To test the requirement for

the AHR in the pharmacology of any compound, it is

imperative to create mice with the Ahr deleted specifically

in a target cell subset, to avoid patent DV and its result-

ing pathologies. Such a mouse model can be created with

bone marrow chimeras or with the conditional Ahr fx

allele and cre recombinase mediated LoxP site recombina-

tion (Cre–Lox) technology.

Conclusion

Much has been elucidated about AHR biology in the last

30 years. It is clear that this receptor is not simply a tran-

scription factor developed to respond to toxicants, but

probably plays a central role in vascular biology. Activa-

tion of this receptor has long been known to cause immu-

nosuppression and thymic involution. Recent data have

implicated this receptor in T-cell differentiation and DC

function. There is little dispute that T-cell lineage specific-

ity is largely determined by transcription factors and that

gene transcription plays large roles in immune responses

in other haematopoietic lineages. As a transcription factor,

the AHR probably modulates immune reactions and also

causes immunotoxicity through transcriptional changes. It

seems likely that a role for this receptor in the function of

the immune system will be defined.
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